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Causality and Waveguide Circuit Theory
Dylan F. Williams, Senior Member, IEEE,and Bradley K. Alpert

Abstract—We develop a new causal power-normalized wave-
guide equivalent-circuit theory that, unlike its predecessors, results
in network parameters usable in both the frequency and time do-
mains in a broad class of waveguides. Enforcing simultaneity of
the voltages, currents, and fields and a power normalization fixes
all of the parameters of the new theory within a single normaliza-
tion factor, including both the magnitude and phase of the charac-
teristic impedance of the waveguide. Enforcing simultaneity also
ensures that the theory’s voltages and currents do not start before
their excitation, and that the network parameters of passive de-
vices are causal, a necessary condition for stable time-domain sim-
ulations.

Index Terms—Causality, characteristic impedance, microwave-
circuit theory, minimum phase.

I. INTRODUCTION

WE WILL develop a new causal power-normalized
waveguide circuit theory. We will present an explicit

construction algorithm that enforces simultaneity of its voltages
and currents with the electric and magnetic fields in the circuit
without the TEM, TE, and TM restrictions of classical wave-
guide circuit theories. This simultaneity will ensure, among
other things, that the theory’s voltages and currents do not
start before their excitation, that the characteristic impedance
is always minimum phase, and that the network parameters of
passive devices are causal—a necessary condition for stable
time-domain simulations.

We will also employ the power normalization of [1] so that
the actual time-averaged complex powerin the circuit is equal
to , and the actual power crossing a reference plane in the
waveguide is equal to the real part of .1 The simultaneity
and power constraints will fix all of the parameters of this new
causal circuit theory, including the characteristic impedance,
within a single positive frequency-independent multiplier that
defines the overall impedance normalization. We will show ex-
plicitly that if the voltages and currents of some other circuit
theory are linearly related to the electric and magnetic fields and
those voltages and currents are not equal to those of this theory,
then they either violate causality or are not power normalized.

Waveguide equivalent-circuit theories prescribe methods for
constructing a waveguide voltageand current from the elec-
tromagnetic fields in uniform waveguides. The intent is to con-
struct and so that the electromagnetic problem reduces to
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1The factor of 1/2 appears in the relation for time-averaged power because
the complex magnitude of voltages, currents, and fields are defined here as the
peak values. The factor of 1/2 does not appear in [1] because there complex
magnitudes are defined in terms of the root mean square of the peak values.

a simpler circuit problem that can be solved with conventional
circuit simulators.

Classical waveguide equivalent-circuit theories, of which [2]
is representative, are based on frequency-independent modal
solutions with a constant wave impedance. While we will see
that the network parameters of these classic theories satisfy the
causality and power-normalization conditions we develop here,
they are strictly limited to TEM, TE, and TM waveguides.

The theories of [1] and [3] attempt to eliminate the restriction
to TEM, TE, and TM waveguides by adding a power normaliza-
tion, an approach first suggested by Brews [4]. The power nor-
malizations used in these theories ensure that passive circuits
cannot create more power than they absorb, a basic requirement
for stable circuit simulation. The normalization ensures, for ex-
ample, that the real part of the impedance of a passive one-port
circuit is always positive.

Nevertheless the waveguide circuit theories of [1] and [3] do
not fix all of their parameters uniquely: they additionally require
a user-defined integration path to define either the voltage or
current. Since they constructand independently at each fre-
quency, they also do not explicitly relate the behavior of their
parameters in the frequency domain to their behavior in the time
domain and, thus, leave unspecified the temporal properties of

and .
Leaving the temporal properties ofand unspecified can

have serious consequences. For example, the network parame-
ters of passive devices in the circuit theories of [1] and [3] are
not constrained to be causal. That is, passive circuits may appear
to respond to inputsbefore, rather than after, the input signal
reaches the device. This behavior complicates the interpretation
of the circuits network parameters in the time domain, and ren-
ders them unsuitable for use with conventional time-based sim-
ulation tools.

In what follows, we develop a causal power-normalized
waveguide equivalent-circuit theory. The theory determines
voltages, currents, and network parameters suitable for use in
both frequency- and time-domain circuit simulations from the
fields of a single-moded waveguide. The theory maintains the
simultaneity of the voltages, currents, and fields inherent in
classical waveguide circuit theory, but is not restricted to TEM,
TE, and TM guides.

II. V OLTAGE AND CURRENT

We begin with a closed waveguide that is uniform in the axial
direction. The waveguide must have only a single dominant
mode and be long enough to support only that mode at a ref-
erence plane whereand are defined. We also require that the
dominant mode be unique and distinct from any other modes
in the system: modes with degeneracies or modes that bifurcate
violate this restriction.
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We begin with a forward-propagating solution of Maxwell’s
equation, whose transverse electric- and magnetic-field solu-
tions we can write as and , and
whose longitudinal electric- and magnetic-field solutions we
can write as and , where is the
angular frequency, is the propagation constant of the forward
mode, is the transverse coordinate in the guide, and

is the longitudinal position along the guide.
The fields , and with propagation constant

will also satisfy Maxwell’s equations in the guide, and we
will call this field solution the backward mode of propagation.
To distinguish between the forward and backward modes of
propagation, we use the convention of [1]. That is, we insist that,
in lossy guides, the real part of the complex power

(1)

carried in the -direction by the forward mode is positive.
If , as occurs in an evanescent waveguide mode,
we use the condition , which forces the mode to
decay with . This convention uniquely identifies the forward
and backward modes, and resolves any phase ambiguities in the
modal fields, , and .

We introduce the voltage and frequency-dependent
normalization with

(2)

and the current and normalization with

(3)

where and are the amplitudes of the mode in the forward
and backward directions. The two normalizing factorsand

define and in terms of the modal field solution ,
which has a fixed, but unspecified, normalization.

We write the total transverse electric field and
magnetic field at a given time in terms of their
frequency-domain representations as

(4)

and

(5)

We define the normalized transverse modes to be

(6)

which imply and . The power normalization
is achieved with the constraint

(7)

where the integral in (7) is over the entire guide cross section.
This normalization implies that
, and ensures that the total time-averaged complex poweris

given by ,
and that the actual power transmitted across a reference plane
is given by the real part of.

Equations (4)–(6) imply that

(8)

where Fourier transformation gives the temporal voltage

(9)

and the temporal current

(10)

and represents convolution with respect to the time.
We say that a function starts at a time if

for and is nonvanishing at somestarting at . We
observe that if and were to start at , then the temporal
voltage would start simultaneously with , and the temporal
current would start simultaneously with .

In what follows, we will present a prescription for deter-
mining and in a single-mode waveguide that is consistent
with the power normalization (7)and such that and do,
in fact, start at . This prescription will, therefore, ensure

andsimultaneity of and and of and .

III. TEM, TE, AND TM GUIDES

Construction of causal and that satisfy the power nor-
malization (7) is straightforward in TEM, TE, and TM guides.
In those guides, there exists a unique wave impedance
and the modal fields can be written as

(11)

where is real. Without loss of generality, we can set
.

Appendix C uses the temporal form of Maxwell’s equations
to show that the temporal wave impedance and temporal
wave admittance must equal zero for . Since
may have zeros or singularities on the real axis, we must take
care when choosing any branch cuts to ensure that the Fourier
transform of has these same temporal properties. That
is, we must choose any branch cuts to be in the upper half of the

plane so that will be analytic in the lower half of the
plane.
With this normalization, , , and

, where is a positive constant multiplier, satisfy the
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power normalization (7). We also have
and , where is the Dirac delta func-
tion, so we see thatstarts simultaneously with , and starts
simultaneously with .

If we choose , then and
, and we see that and correspond to the voltages and

currents of the classic theory. Thus, in both the classic wave-
guide circuit theoryandour causal generalization of that theory,
the voltage and current start simultaneously with the electric
and magnetic fields, and the characteristic impedanceis pro-
portional to the wave impedance of TEM, TM, and TE modes.
Other choices, such as setting in lossless rectangular
waveguide, which is allowed in [1], [3], and [5], will not be
consistent with the classic waveguide circuit theory or with our
causal generalization.

IV. NON-TEM, NON-TE, AND NON-TM GUIDES

Appendix A constructs a normalizing voltage such that
the time-domain voltage associated with it and the electric
field start at the same time when the modal electric fieldis
separable and can be expanded as a finite sum

(12)

where the are rational functions of and the are
real vector functions that satisfy the orthogonality condition

if

if
(13)

In the following section, we will argue that this form is not
overly restrictive.

A similar argument shows that when separates in this way,
we can construct a normalizing currentsuch that the time-
domain current associated with it and the magnetic field start
at the same time.

We now apply a Wiener–Hopf decomposition [6] to the
function . Define the auxiliary function
from and , where
is the Hilbert transform (see Appendix II for a discussion of
minimum-phase functions and the Hilbert transform). We
then have , with being the
minimum phase by construction.

Then define and from ,
, , and

. These conditions imply that
and . Finally, define and from

and , where is a positive constant
multiplier.

and are minimum phase by construction, thus,starts
simultaneously with and, therefore, with , and starts
simultaneously with and, therefore, with . Furthermore,

, , and
, thus,

and satisfy the power normalization constraint (7). Thus, the
voltages and currents are both causal and power normalized.

Fig. 1. Source connected to an infinite waveguide.

V. LIMITATIONS

For TEM, TM, and TE modes, our causal theory reduces
to the classic circuit theory. These modes include a number
of useful idealizations for which explicit expressions for the
modal fields and wave impedance are available. In treating these
modes, we have placed no restriction on the form of the wave
impedance : it need not have a rational approximation.

We used the construction algorithm of Appendix A to over-
come the TEM, TE, and TM restriction of the classic circuit
theory. That algorithm requires that the in (12) be rational
functions of . Nevertheless, the form of (12) is general enough
to represent any piecewise continuous modal field up to any fi-
nite frequency to any desired accuracy. This is because rational
functions are sufficient to approximate to arbitrary precision any
function analytic in a half-plane and either regular at infinity or
possessing an isolated pole there [6]. Thus, we can approximate
the wave solutions in guides constructed entirely of materials
with finite loss as accurately as we wish with this expansion,
and we see that it is not overly restrictive in practice. However,
we may not be able to treat some lossless idealizations that are
neither TEM, TM, nor TE with the two approaches suggested
here.

VI. CHARACTERISTIC IMPEDANCE

Fig. 1 shows a source connected to an infinite waveguide with
the reference plane chosen far enough away from the source to
satisfy the single-mode restrictions of this theory. Since only the
forward mode is present in the situation illustrated in Fig. 1, we
have, for this special case,

(14)

thus,

(15)

which is indeed independent of. Thus,

(16)
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is fixed by the power normalization (7) [1].
Maxwell’s equations imply that, when only the forward mode

is present, and arrive simultaneously (see Appendix C),
thus, and must as well. Thus, in our causal theory,
must be a minimum phase function and

(17)

Once is determined by the power normalization (7)
and the magnitude of is restricted by (17), the space of solu-
tions for is defined by

(18)

where is a real positive frequency-independent constant that
determines the overall impedance normalization.2 Thus, we see
that our causal power-normalized circuit theory fixes the char-
acteristic impedance to within the constant multiplier. As a
corollary, if the guide has a unique wave impedance, that wave
impedance will be minimum phase (see also Appendix C).

VII. U NIQUENESS

The causal power-normalized voltages and currents are
unique. Imagine that there are two possible voltage normal-
izations and in the theory. We require that, for any
excitation in the guide, the temporal voltagemust start
simultaneously with the electric field so the two temporal
voltages and associated with and will always start
at the same time as well.

Simultaneous starting times of and for any excita-
tion implies that is minimum phase, thus,

. However, once we have
chosen the constant multiplierand, thus, fixed , we must
also have , which implies that

. Thus, and . A
similar argument shows that is unique.

We have just shown that the requirement that the voltages and
currents be linearly related to and start simultaneously with the
electric and magnetic fields and the power normalization imply
that the voltages and currents are unique to within a constant
multiplier . We conclude that if the voltages and currents of
some other circuit theory are also linearly related to the electric
and magnetic fields and those voltages and currents are not equal
to those of this theory for some, then they either must violate
causality or must not be power normalized.

VIII. C AUSALITY CONDITION

Consider the passive circuit of Fig. 2. It connects an input
waveguide with voltages and currentsand at the reference
plane on the left-hand side far enough from the source and cir-
cuit to satisfy the single-mode assumption of this theory to an
output waveguide with voltages and currentsand at the
reference plane on the right-hand side, again, far enough from
the circuit to satisfy our single-mode assumption.

2Equation (18) results from two facts: the Hilbert transform has a null space
consisting of the constant functions andH[H[f(!)]] = �f(!) + c, wherec
is a real positive frequency-independent constant.

Fig. 2. Source exciting a passive circuit connected to another waveguide.

If the voltage or current at the output were to start before the
voltage and current at the input, the fields at the output would
have to have started before the fields at the input. This is clearly
not possible, thus, we conclude that the voltage at the output al-
ways starts after the voltage at the input. This shows that transfer
functions such as that determine voltage or current at the
output from voltage or current at the input are causal. A similar
argument shows that the “driving-point” impedances [7] of the
system are minimum phase.

In essence, by enforcing simultaneity in our causal circuit
theory, the causal properties of the actual electromagnetic fields
in the circuits are preserved by the theory’s voltages and cur-
rents. This is significant because causal network parameters are
a basic requirement for stable time-domain circuit simulation.

IX. A PPLICATION TO THEMIS TRANSMISSIONLINE

Metal–insulator–semiconductor (MIS) transmission lines are
neither TEM, TE, nor TM. The theories of [1] and [3] suggest
combining either a voltage normalization

(19)

or a current normalization

(20)

with the power constraint of (7) to constructand . However,
different choices of voltage and current paths in (19) and (20)
are possible. Now we will show that not all of these choices are
consistent with our causal circuit theory.

We will illustrate the various choices of voltage and current
paths with the mode of the infinitely wide MIS line in-
vestigated in [8]. This MIS line consists of a 1.0-m-thick metal
signal plane with a conductivity of 3 10 S/m separated from
the 100- m-thick 100 cm silicon supporting substrate by a
1.0- m-thick oxide with conductivity of 10 S/m. The ground
conductor on the back of the silicon substrate is infinitely thin
and perfectly conducting.

Fig. 3 compares the voltage drop across the oxide layer
to the total voltage drop across both the oxide and substrate
in our MIS line. The figure shows that the ratio of these quan-
tities, which is marked with hollow circles, displays a compli-
cated evolution with frequency. The figure not only illustrates



WILLIAMS AND ALPERT: CAUSALITY AND WAVEGUIDE CIRCUIT THEORY 619

Fig. 3. Ratios of oxide voltage to the total voltage of the MIS line,
differences between the approximate fields and exact field solutions, and the
difference between the causal characteristic impedance and power/total-voltage
characteristic impedances. The ratios are plotted against the left-hand-side
axis, while the differences are plotted on the right-hand-side axis. All values
are percentages.

the complex interaction of the electric field with the dielectrics,
but also the large differences between these two voltage defini-
tions in the MIS line.

The conventional circuit theories of [1] and [3] do not specify
the voltage path uniquely, and the choice is not obvious. For
example, devices embedded in MIS lines are typically fabricated
on the silicon surface; they are connected to the signal line with
vias through the oxide and to the ground with ohmic contacts at
the silicon surface. This suggests that a voltage pathin the
MIS line from the silicon surface through the oxide to the signal
line, not the total voltage , might correspond most closely to
the actual voltage seen by the device and be the best normalizing
voltage in the circuit theory.

We used the construction procedure of Appendix A to deter-
mine the causal power-normalized voltage and current for our
MIS line. To construct the voltage, we used two basis func-
tions and multiplying rational functions formed from the ra-
tios of first-order polynomials in to approximate the elec-
tric field. The first basis function was uniform in the oxide
and zero in the substrate, while the second basis function
was uniform in the substrate and zero in the oxide. The dashed
curve marked with hollow squares plots the maximum value of

at each frequency point on the right axis.
The curve shows that our rational function approximation to the
actual fields of the MIS line is extremely accurate.

We expanded the magnetic field using only a single constant
basis function in the oxide and substrate. The solid curve marked
with solid squares plots the maximum value of error we incurred
with this choice of basis function.

When we applied the procedure outlined in Appendix A to
these basis functions to construct the causal power-normalized
voltage, we found that it equaled the total voltageacross the
line, and that the causal power-normalized current was nearly
equal to the current in the signal conductor of the MIS line. The
solid line of Fig. 3 marked with crosses plots the difference be-
tween the causal power-normalized characteristic impedance

Fig. 4. jZ j for the MIS transmission line of [8].

Fig. 5. Fourier transform of the characteristic impedance labeled
“Power/oxide-voltage” of Fig. 4.

we constructed in this way and the power/total-voltage charac-
teristic impedance , where is defined from the power
constraint and the total voltageacross the oxide and substrate.
The agreement is excellent.

The solid curve in Fig. 4, which is labeled “Causal,” cor-
responds to the magnitude of the causal power-normalized char-
acteristic impedance. When we added to this figure, the
two curves were indistinguishable.

However, Fig. 4 shows that the characteristic impedance de-
fined from the power constraint of (7) and the voltageacross
the oxide, which is labeled “Power/oxide-voltage,” differs sig-
nificantly from the characteristic impedance required by the
causal theory presented here. This shows that using the oxide
voltage does, in fact, affect the characteristic impedance
greatly, as one might expect from the ratios plotted in Fig. 3.

Fig. 5 shows the Fourier transform of the characteristic
impedance defined with the voltage path through the oxide and
illustrates the difficulty with this definition of voltage and the
resulting characteristic impedance: the guide will respond to
input signals before the excitation reaches it.
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This example illustrates an important contribution of the
causal theory presented here: it replaces the subjective and
sometimes misleading “common-sense” criteria for defining

in guides that are neither TEM, TE, or TM with a clear
and unambiguous procedure that guarantees causal responses.
This new approach should be especially useful in complex
transmission structures where the choice of voltage and current
paths is not intuitively obvious.

X. ERROR IN

The magnitude of in our causal circuit theory may be de-
termined from the phase of through a Hilbert transform rela-
tionship (18). Evaluating the Hilbert transform in (18) requires
integrating over all frequencies. Ignorance of the phase ofat
frequencies above those at which the theory is to be applied will
result in errors in at the frequencies where the theory is ap-
plied.

Appendix D develops a bound for the error in at a given
frequency when the is known exactly up to some
greater frequency . The result is

(21)

where is the actual characteristic impedance andis the
value of characteristic impedance we determine from incorrect
assumptions about the high frequency behavior of .

The expression in (21) shows that the error in can be
made as small as required if we are willing to restrict the fre-
quencies to which we apply the theory to frequencies much
smaller than , the frequency to which we evaluate the phase of

. Although the convergence indicated by (21) is slow, it cor-
responds to a worst-case scenario: convergence for more for-
giving phase errors will be better. However, it should perhaps
be emphasized that, while small errors in will sometimes
be unavoidable, the resulting characteristic impedance will be
causal and have phase equal to where the phase of
is known.

XI. CONCLUSION

We have presented a causal power-normalized waveguide cir-
cuit theory that overcomes the TEM, TE, and TM restrictions of
classic waveguide circuit theories. The network parameters of
the causal circuit theory presented here preserve the causal prop-
erties of the actual circuit and the power in the network. This
is significant because these properties are required for stable
time-domain circuit simulation. Since classical waveguide cir-
cuit theories also enforce these properties in TEM, TE, and TM
guides, we can say that this theory conserves the essential at-
tributes of the classical waveguide circuit theory in a more gen-
eral setting.

In the causal circuit theory, the magnitude of the characteristic
impedance is related to its temporal properties, not to its proper-
ties in the frequency domain. This adds a new perspective to the
debate over the relative merits of the various impedance normal-
izations possible in waveguide equivalent-circuit theories. The
implications have been further explored in [9]–[11].

We could have applied causality constraints to an anal-
ogous reciprocity-normalized circuit theory [12]. However,
the new reciprocity-normalized theory would fail to enforce
the passivity condition required for stable circuit simulation.
That condition ensures, for example, that the real part of the
impedance of a passive one-port circuit is always positive. Our
causal power-normalized theory, on the other hand, explicitly
enforces the passivity and causality conditions, both of which
are needed for stable time-domain simulation.

APPENDIX A
CONSTRUCTION OF

Referring to Fig. 1, we seek a normalizing voltage
when can be written in the form of (12). We wish to construct
the normalizing voltage so that the temporal voltage
will start exactly when the electric field arrives at . That
is, if for , then the electric field at
vanishes for times and vice versa.

Consider the normalizing voltage

(22)

where are polynomials in . This normalizing voltage is
defined so that

(23)

Referring again to Fig. 1, only the single forward mode is
present, thus, the voltage associated with the normalizing
voltage at is

(24)

and in the time domain is

(25)

Since the are polynomials, they have no poles at all and are
analytic everywhere. As a result, for (see
Appendix B). Thus, if the electric field vanishes for , then
so do its moments with respect to the , and we see that, by
construction, a vanishing electric field for implies that

for .
We will now show that it is possible to construct the poly-

nomials so that the inverse is true as well. That is, so that
for implies that the moments of the electric

field with respect to the and, hence, the electric field itself,
vanish for . In essence, we will show that there are enough
degrees of freedom available in the choice of the polynomials

that we can eliminate all of the poles in the lower half of
the plane from an expression that determines the moments of
the electric field from . This will ensure that the expression
is analytic in the lower half-plane and, thus, that their Fourier
transforms are zero for .
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The th moment of the total electric field with respect to
is

(26)

If for some , has no poles in the lower half of theplane,
then for implies that the th moment of the
total electric field vanishes for . Our aim is to show that
we can pick the so that none of the have any poles at
all. We will do this by showing that we can construct the so
that none of the have zeros.

We can write the as , where the
and are polynomials in , and expand the as

(27)

We can rearrange (27) to obtain a single common denomi-
nator

(28)

where

(29)

The numerator of (28) is independent of the index.
Define to be a greatest common divisor of the. That

is, is a polynomial of largest possible order such that
, where is a polynomial of order less than or equal to

the order of . The Euclidian algorithm provides a procedure
for finding a set of so that [13]. Thus,
we can write (28) as

(30)

We have just shown that it is possible to constructso that
the in (26) have no zeroes. This guarantees that we can con-
struct a normalizing voltage from the modal fields such that

the voltage associated with it is zero for times when-
ever the electric field is zero for and vice versa. That is,
we have constructed a voltage that starts simultaneously
with the electric field.

APPENDIX B
MINIMUM PHASE FUNCTIONS

Throughout this paper, we denote the frequency-domain rep-
resentation of a function as , and its time-domain repre-
sentation as , where is the angular frequency andis the
time. Here, is the inverse Fourier transform of

(31)

where is real, and the integration in (31) is performed over
real values of . If has poles on the real axis, we use
the limiting value of the integral in (31) as the integration con-
tour approaches the real axis from below. is the Fourier
transform of as follows:

(32)

where may be complex.
1) Causal Function:A causal function equals zero for

. This implies that is analytic for and that
, where is the Hilbert transform

[14], [15].
2) Minimum Phase Function:We call a function min-

imum phase if both and its reciprocal correspond
to causal functions in the time domain [15]. Since neither the de-
pendent nor independent variables in the time domain related by
a minimum phase function in the frequency domain can occur
before the other,two nonzero signals related by a minimum
phase function start simultaneously.

A minimum phase function is causal; thus, it has the property
that its real and imaginary parts are a Hilbert transform pair.
In addition, the real and imaginary parts of the complex loga-
rithm of a minimum phase function are a Hilbert transform pair
[15]. That is, . The minimum phase
constraint is much stronger than the causality constraint: it al-
lows the phase of the function to be determined from the Hilbert
transform of the logarithm of its magnitude and the magnitude
of the function to be determined within a constant multiplier
from its phase.

3) Rational Function: A rational function can be
written as

(33)

where may be complex, is a scalar, and and are
polynomials in with complex roots and . Except for the
multiplier , any rational function is entirely described by
its zeroes and poles .

4) Pole and Zero Positions:Since causal rational functions
are analytic in the lower half of theplane defined by
, all of the poles of a causal function must lie in the upper
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half of the plane [14]. That is, for all the in
(33).

If is minimum phase, then its reciprocal is also
causal, and its zeroes must also lie in the upper half of the
plane. That is, both and for all of the

and in (33) [15].

APPENDIX C
SIMULTANEITY OF AND

We will now show that and due to the
source in Fig. 1 start simultaneously. Assume that the transverse
electric field due to the source has not yet arrived at some trans-
verse coordinateat the reference plane of Fig. 1 for . That
is, we will assume that for and .
The fields in the region must satisfy
for , which implies

(34)

As a result, for and .
The fields must also satisfy for and

, where is the position-dependent permittivity. Since
for and

(35)

This, in turn, implies that

(36)

for and . This shows that, except for a dc compo-
nent, for and . Thus, we see that

for and implies
there as well, and the transverse magnetic field starts at the ref-
erence plane no earlier than the transverse electric field.

A similar argument shows that the transverse electric field
starts no earlier than the transverse magnetic field. This
completes the argument, showing that neither
nor precedes the other and, thus, that they start
simultaneously.

As a consequence, when a guide has a unique wave
impedance , both the temporal wave impedance
and the temporal wave admittance must equal zero
for . As a corollary, we see that and its inverse

must be minimum phase.

APPENDIX D
ERRORBOUND FOR

Assume that we have determined exactly the phase ofup
to some frequency and that we wish to determine at
frequencies . We will develop an expression bounding
the error with which we calculate .

The logarithm of is the inverse Hilbert transform of
as follows:

(37)

If is the error we make in determining the phase of, we
calculate the characteristic impedance from

(38)

We will always use a condition such as (19) to match the
low-frequency limits of and ; thus, we can write the
magnitude of the characteristic impedancewe will use in
the theory as

(39)

Expanding using (37) and (38), we
obtain

(40)

Since is odd and equal to zero for , we can rewrite
(40) as

(41)

The sign of the real part of indicates the direction of the
real time-averaged power carried by the mode down the guide.
If the real part of for the forward (decaying) mode were neg-
ative, the mode would no longer dissipate energy as it propa-
gated down the guide, and violate conservation of energy. Thus,
the phase of can only vary between , and the error
we make in evaluating the phase of cannot be greater than

. Since the denominator of (41) is odd, the worst-case error
is made when . Thus, we can bound with

(42)

Straightforward manipulation gives (21).
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