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Causality and Waveguide Circuit Theory

Dylan F. Williams Senior Member, IEEEBNnd Bradley K. Alpert

Abstract—We develop a new causal power-normalized wave- a simpler circuit problem that can be solved with conventional
guide equivalent-circuit theory that, unlike its predecessors, results circuit simulators.
in network parameters usable in both the frequency and time do-  ¢)assical waveguide equivalent-circuit theories, of which [2]
mains in a broad class of waveguides. Enforcing simultaneity of . . -
the voltages, currents, and fields and a power normalization fixes 1S represen_tatlve, are based on frequency-mde_penden@ modal
all of the parameters of the new theory within a single normaliza- Solutions with a constant wave impedance. While we will see
tion factor, including both the magnitude and phase of the charac- that the network parameters of these classic theories satisfy the
teristic impedance of the waveguide. Enforcing simultaneity also causality and power-normalization conditions we develop here,
ensures that the theory’s voltages and currents do not start before they are strictly limited to TEM, TE, and TM waveguides.
their excitation, and that the network parameters of passive de- The theories of [1] and [3] attempt to eliminate the restriction
vices are causal, a necessary condition for stable time-domain sim- ¢ . -
ulations. to TEM, TE, and TM waveguides by adding a power normaliza-
tion, an approach first suggested by Brews [4]. The power nor-
malizations used in these theories ensure that passive circuits
cannot create more power than they absorb, a basic requirement
for stable circuit simulation. The normalization ensures, for ex-

|. INTRODUCTION ample, that the real part of the impedance of a passive one-port
E WILL develop a new causal power-normalizedircuitis always positive.

Wwaveguide circuit theory. We will present an explicit Nevertheless the waveguide circuit theories of [1] and [3] do
construction algorithm that enforces simultaneity of its voltagd¥t fix all of their parameters uniquely: they additionally require
and currents with the electric and magnetic fields in the circiit User-defined integration path to define either the voltage or
without the TEM, TE, and TM restrictions of classical wavecurrent. Since they constructand: independently at each fre-
guide circuit theories. This simultaneity will ensure, amonguency, they also do not explicitly relate the behavior of their
other things, that the theory’s voltages and currents do rfirameters in the frequency domain to their behavior in the time
start before their excitation, that the characteristic impedan@@main and, thus, leave unspecified the temporal properties of
is always minimum phase, and that the network parametersvo*?ndi-
passive devices are causal—a necessary condition for stable€aving the temporal properties ofand: unspecified can
time-domain simulations. have serious consequences. For example, the network parame-

We will also employ the power normalization of [1] so thaters of passive devices in the circuit theories of [1] and [3] are
the actual time-averaged complex powén the circuit is equal Not constrained to be causal. That is, passive circuits may appear
to 1/2vi*, and the actual power crossing a reference plane in tigeréspond to inputbefore rather than after, the input signal
waveguide is equal to the real partigRvi* 1 The simultaneity reaches the device. This behavior complicates the interpretation
and power constraints will fix all of the parameters of this neff the circuits network parameters in the time domain, and ren-
causal circuit theory, including the characteristic impedafige ders them unsuitable for use with conventional time-based sim-
within a single positive frequency-independent multiplier thatlation tools.
defines the overall impedance normalization. We will show ex- In wWhat follows, we develop a causal power-normalized
plicitly that if the voltages and currents of some other circuv@veguide equivalent-circuit theory. The theory determines
theory are linearly related to the electric and magnetic fields aM@ltages, currents, and network parameters suitable for use in
those voltages and currents are not equal to those of this the®8th frequency- and time-domain circuit simulations from the
then they either violate causality or are not power normalizedi€lds of a single-moded waveguide. The theory maintains the

Waveguide equivalent-circuit theories prescribe methods f@fnultaneity of the voltages, currents, and fields inherent in
constructing a waveguide voltageand curreni from the elec- classical waveguide circuit theory, but is not restricted to TEM,
tromagnetic fields in uniform waveguides. The intent is to cor-E. and TM guides.
structv and: so that the electromagnetic problem reduces to

Index Terms—Causality, characteristic impedance, microwave-
circuit theory, minimum phase.

[I. VOLTAGE AND CURRENT
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We begin with a forward-propagating solution of Maxwell'svhich imply E; = ve, andH = ih;. The power normalization
equation, whose transverse electric- and magnetic-field soisi-achieved with the constraint
tions we can write a®(w, r)e~ 7% and hy(w, r)e”7*, and
whose longitudinal electric- and magnetic-field solutions we vo(w)is(w) = po(w) = /et(w, ) X b (w, ) - zdr  (7)
can write ase,(w, r)e”7* and h,(w, r)e”7*, wherew is the
angular frequencyy is the propagation constant of the forwaravhere the integral in (7) is over the entire gwde cross section.
moder = (z, ) is the transverse coordinate in the guide, aribhis normalization implies thaf ¢, (w, r) x b} (w, ) -z dr =
z is the longitudinal position along the guide. 1, and ensures that the total time- averaged complex ppuger
The fieldse;, —h;, —¢,, andh, with propagation constant given byp = 1/2 [ Ei(w,7) XH{(w, 7) - zdr = 1/2vé*,
—~ will also satisfy Maxwell's equations in the guide, and w@nd that the actual power transmitted across a reference plane
will call this field solution the backward mode of propagationis given by the real part gf.
To distinguish between the forward and backward modes ofEquations (4)—(6) imply that
propagation, we use the convention of [1]. Thatis, we insist that,

in lossy guides, the real part of the complex power Bt 7, 2) =0t ) @&t 7)
Hi(t, 7, 2) =i(t, ) @hi(t. 7) ®)
polw) = /et(w’ r) x hi(w, 7) - zdr (@) \where Fourier transformation gives the temporal voltage
carried in the+z-direction by the forward mode is positive. B(t, 2) = 1 /OO v(w, 2)eit dw 9)
If Re(pp) = 0, as occurs in an evanescent waveguide mode, 2

we use 'Fhe conditiorRe(fy)_ > 0,_Which_forcee the mode 10 4,4 the temporal current
decay withz. This convention uniquely identifies the forward
o 1 oo ’
and baekward modes, and resolves any phase ambiguities in the (t ) = L(% 2)e5t doy
modal fields,y, andpy. 2
We introduce the voltage(w, z) and frequency-dependent
normalizationuo(w) with

(10)

and (® represents convglution with respect to the time
We say that a functiodr'(¢, ) starts at a timey if £'(¢, r) =
0fort < tg andis nonvanishing at somestarting at = ¢,. We

Eyw, 7, 2) = [C+(w)e_w + C-(w)ew} e(w, 7) observe that i&, andh, were to start at = 0, then the temporal
voltage? Would start S|multaneously WltEf , and the temporal
v(w, z)
= e(w, ) (2) current; would start simultaneously With ;.
vo(w) In what follows, we will present a prescription for deter-

mining vo andso in a single-mode waveguide that is consistent
with the power normalization (7and such thaté; andh{ do,
in fact, start at = 0. This prescription will, therefore, ensure

and the curreni(w, z) and normalizationy(w) with

H(w,r 2)= [C+(w)€_w - C—(w)ew} hi(w, ) p = vi* andsimultaneitys of andE; and of; andH..
- L(”( ’;) hy(w, 7) @3) lll. TEM, TE, AND TM GUIDES
1olW

Construction of causaly andiq that satisfy the power nor-
wherec, andc_ are the amplitudes of the mode in the forwardnalization (7) is straightforward in TEM, TE, and TM guides.
and backward directions. The two normalizing factegsand In those guides, there exists a unique wave impedahde,)

1o definev andi in terms of the modal field solutiofe;, h.}, and the modal fields can be written as
which has a fixed, but unspecified, normalization.
) blas _ _zx f(r)

We write the total transverse electric fielg (¢, r, z) and ef(w, ) =f(r) hifw,7T)= Zulw)
magnetic fieldH (¢, r, z) at a given timet in terms of their wi¥
frequency-domain representations as where f(r) is real. Without loss of generality, we can set
JIf(r))2dr = 1.

Appendix C uses the temporal form of Maxwell’'s equations
to show that the temporal wave impedalj%e(t) and temporal
wave admittancé?w(t) must equal zero far < 0. SinceZ,, (w)
may have zeros or singularities on the real axis, we must take

H, (7, 2) / H(w, 7, 2)™t dw. (5) care when choosing any branch cuts to ensure that t_he Fourier
transform ofZ,,(w) has these same temporal properties. That
is, we must choose any branch cuts to be in the upper half of the

We define the normalized transverse modés h;} tobe  « plane so thaZ,,(w) will be analytic in the lower half of the
w plane.
e{w, 7) W (w, 7) hy(w, 7) ©) With this normalizationpy = 1/Z7%, vo = A, andig =
vo(w) e\ T io(w) 1/(\Z,), where is a positive constant multiplier, satisfy the

11)

Et r 2) / E (v, r, 2)e/*t dw 4

and

e (w, r) =
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power normalization (7). We also ha&dt, r) = \~16(t) f(r)
andiz/(t, r) = A8(t)z x f(r), whereé is the Dirac delta func-
tion, so we see that starts simultaneously witﬁ?t, and; starts
simultaneously withi ;.

If we choose\ = 1, thenE, = ve, andH; = iZ,h, =
iz % e, and we see that andi correspond to the voltages and
currents of the classic theory. Thus, in both the classic wave-
guide circuit theoryandour causal generalization of that theory,
the voltage and current start simultaneously with the electric referinieoplane
and magnetic fields, and the characteristic impedafyas pro-
portional to the wave impedance of TEM, TM, and TE modesig. 1. Source connected to an infinite waveguide.
Other choices, such as settif#gy| = 1 in lossless rectangular
waveguide, which is allowed in [1], [3], and [5], will not be

consistent with the classic waveguide circuit theory or with our
causal generalization. For TEM, TM, and TE modes, our causal theory reduces

to the classic circuit theory. These modes include a number
of useful idealizations for which explicit expressions for the
modal fields and wave impedance are available. In treating these
Appendix A constructs a normalizing voltagg such that modes, we have placed no restriction on the form of the wave
the time-domain voltagé’ associated with it and the electricimpedanceZ,,: it need not have a rational approximation.
field start at the same time when the modal electric figlds We used the construction algorithm of Appendix A to over-
separable and can be expanded as a finite sum come the TEM, TE, and TM restriction of the classic circuit
theory. That algorithm requires that thg, in (12) be rational
- functions ofw. Nevertheless, the form of (12) is general enough
ew, ) = Z Cm(w) i (r) 12) o represent any piecewise continuous modal field up to any fi-
m=t nite frequency to any desired accuracy. This is because rational
where ther,, () are rational functions af and thef, (r) are functions are sufficient to approximate to arbitrary precision any

real vector functions that satisfy the orthogonality condition function analytic in a half-plane and either regular at infinity or
possessing an isolated pole there [6]. Thus, we can approximate

1, if m=j the wave solutions in guides constructed entirely of materials

/fm(T) fi(r)dr= {0 i . (13)  with finite loss as accurately as we wish with this expansion,

’ itm # 5. and we see that it is not overly restrictive in practice. However,
In the following section, we will argue that this form is notve may not be able to treat some lossless idealizations that are
overly restrictive. neither TEM, TM, nor TE with the two approaches suggested
A similar argument shows that whén separates in this way, here.

we can construct a normalizing currefjtsuch that the time-
domain current’ associated with it and the magnetic field start VI. CHARACTERISTIC IMPEDANCE

at the same time. _ N Fig. 1 shows a source connected to an infinite waveguide with
We now apply a /Y\//'f”er_HODf decomposition [6] to thene reference plane chosen far enough away from the source to
function ¢ = po/vgiy”. Define the auxiliary functionG'  gatisfy the single-mode restrictions of this theory. Since only the

from arg(G) = arg(g) and H(ln |G|) = arg(g), where™  tonyard mode is present in the situation illustrated in Fig. 1, we
is the Hilbert transform (see Appendix Il for a discussion gf 46 for this special case, = 0

minimum-phase functions and the Hilbert transfohf). We

source infinite waveguide

V. LIMITATIONS

IV. NON-TEM, NON-TE, AND NON-TM GUIDES

then haveH(ln |G|) = arg(G) = arg(g), with G being the vy (w, 2) =vo(w)eq (w)e™ 7
minimum phase by construction.
Then definek., andK; fromIn | K| = 1/2(In |g| + In|G]), it(w, 2) =io(w)e(w)e™ ™ (14)
In|Kj| = 1/2(In|g| — In|G]), arg(K,) = H(n|K,|), and
arg(K;) = H(In|Ki|). These conditions imply thatc,| = thus,
VI|¢G| and |K;| = +/|g/G|. Finally, definev, andio from o(w, 2) volw)
vo = MK, v}y andip = Kjil, /A, where) is a positive constant Zo(w) = —— = - (15)
multiplier. iw, 2) o =0 olw)

K, andK; are minimum phase by construction, thistarts
simultaneously witht’ and, therefore, withE,, and+’ starts
simultaneously with’ and, therefore, withf,. Furthermore, B vo(w)
vio* = KvKipo/g, lvoio®| = |pol, and arg(voio®) = arg(Zo(w)) = arg <i0(w)>
arg(Ky) — arg(K;) + arg(po) — arg(g) = arg(po), thus,vo

which is indeed independent of Thus,

andi, satisfy the power normalization constraint (7). Thus, the = arg (vo(w)ig(w))
voltages and currents are both causal and power normalized. = arg (po(w)) (16)
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is fixed by the power normalization (7) [1]. {v, 1} {vy, i}

Maxwell’s equations imply that, when only the forward mode 1
is presentfs, and H, arrive simultaneously (see Appendix C),
thus, andz must as well. Thus, in our causal theafy, = v/i
must be a minimum phase function and

passive
circuit

SOUrce AN —

’H[ln (|Z0(w)|)} = arg [Zo(w)]. (17)

Oncearg(Z) is determined by the power normalization (7) '

. . . input output
and the magnitude df, is restricted by (17), the space of solu- reference reference
tions for | Z,| is defined by plane plane
|Z0 (w)| — )\ H(arg[Zo(w)]) (18) Fig. 2. Source exciting a passive circuit connected to another waveguide.

where\ is a real positive frequency-independent constant thatlf the voltage or current at the output were to start before the
determines the overall impedance normalizatidinus, we see voltage and current at the input, the fields at the output would
that our causal power-normalized circuit theory fixes the chatave to have started before the fields at the input. This is clearly
acteristic impedance to within the constant multipllerAs a not possible, thus, we conclude that the voltage at the output al-
corollary, if the guide has a unique wave impedance, that wawewys starts after the voltage at the input. This shows that transfer
impedance will be minimum phase (see also Appendix C). functions such as/,, that determine voltage or current at the
output from voltage or current at the input are causal. A similar
VIl. UNIQUENESS argument shows that the “driving-point” impedances [7] of the

. system are minimum phase.
The causal power-normalized voltages and currents a : . o N
n essence, by enforcing simultaneity in our causal circuit

unique. Imagine tha_t there are two possml_e voltage nOrm"ﬁlfeory, the causal properties of the actual electromagnetic fields
izationswvg; and vge in the theory. We require that, for any.

A . N in the circuits are preserved by the theory’s voltages and cur-
excitation in the guide, the temporal voltage must start S T
; ) Con rents. This is significant because causal network parameters are
simultaneously with the electric field so the two tempora

N N : . . a basic requirement for stable time-domain circuit simulation.
voltagesi; andi, associated withrg; andwge will always start
at the same time as well.
Simultaneous starting times a@f and ¢, for any excita-
tion implies thatv /v = wo1 /vo2 iS minimum phase, thus, Metal-insulator-semiconductor (MIS) transmission lines are

IX. APPLICATION TO THEMIS TRANSMISSIONLINE

arg(vor fvo2) = HM[In(voy/ve2)]. However, once we have neither TEM, TE, nor TM. The theories of [1] and [3] suggest

chosen the constant multiplierand, thus, fixedZ,, we must combining either a voltage normalization

also havevo|? = |vo(po/io™)| = |Zopol|, which implies that

|U()1/U()2| = 1. ThUS,aI‘g(UOl/Uog) = 0 and Vo1 = Ug2. A Vo = —/ e - dl (19)
path

similar argument shows tha{ is unique.

We have just shown that the requirement that the voltages af}dy current normalization
currents be linearly related to and start simultaneously with the
electric and magnetic fields and the power normalization imply io = j{ h.-dl (20)
that the voltages and currents are unique to within a constant closed

multiplier A\. We conclude that if the voltages and currents Of'th th traint of (7) t trucandi. H
some other circuit theory are also linearly related to the electiévﬁé e power constraint of (7) to construcand:. However,

path

and magnetic fields and those voltages and currents are note ' (?rent choices of voltage and current paths in (19) and (20)

to those of this theory for some then they either must violate re possible. Now we will show that not all of these choices are

: : consistent with our causal circuit theory.
causality or must not be power normalized. - . \eory
We will illustrate the various choices of voltage and current

paths with théI'Mq; mode of the infinitely wide MIS line in-
vestigated in [8]. This MIS line consists of a 1.0A-thick metal
Consider the passive circuit of Fig. 2. It connects an inpstgnal plane with a conductivity of 8 10" S/m separated from
waveguide with voltages and currentsandi; at the reference the 100um-thick 10022 - cm silicon supporting substrate by a
plane on the left-hand side far enough from the source and cit0-:m-thick oxide with conductivity of 162 S/m. The ground
cuit to satisfy the single-mode assumption of this theory to @onductor on the back of the silicon substrate is infinitely thin
output waveguide with voltages and currenisandi, at the and perfectly conducting.
reference plane on the right-hand side, again, far enough frontig. 3 compares the voltage drep, across the oxide layer

VIIl. CAUSALITY CONDITION

the circuit to satisfy our single-mode assumption. to the total voltage drop; across both the oxide and substrate

_ _ in our MIS line. The figure shows that the ratio of these quan-
2Equation (18) results from two facts: the Hilbert transform has a null spaﬁ. L . . . .
consisting of the constant functions arlH[f(w)]] = —f(ws) + ¢, wheree _U0€S, Which is marked with hollow circles, displays a compli-

is a real positive frequency-independent constant. cated evolution with frequency. The figure not only illustrates



WILLIAMS AND ALPERT: CAUSALITY AND WAVEGUIDE CIRCUIT THEORY 619

100 1 0.012
- | Vou/ v s
e —— Causal Z
| Zc - Zp-vl |/|Zp—vt | 0.010 ausa 0'
or w—a|cfy-h|lh| 3 o1 R Power/oxide-voltage
= T a---a| Y c.f.-elle ] &
2 Tesoalled /1§
g 60 ERC S
= i g8 = 0006
Z 2 0.001 g N
£ g 0.004
sl 2 \
20 < 0.0001
E 0.002 -
0 Lol Lol Hr/IBIIIHI‘ L 0.00001 O ) L u|.TIN"“’*-;---».,,._._, Ll L
0.001 0.01 0.1 1 10 100 0.01 o | "
Frequency (GHz)

Frequency (GHz)

Fig. 3. Ratios of oxide voltage to the total voltage of the MIS line
differences between the approximate fields and exact field solutions, and
difference between the causal characteristic impedance and power/total-voltage
characteristic impedances. The ratios are plotted against the left-hand-side
axis, while the differences are plotted on the right-hand-side axis. All valut 0.75x10°
are percentages. F

FH% 4. |Z,| for the MIS transmission line of [8].

the complex interaction of the electric field with the dielectrics
but also the large differences between these two voltage defi
tions in the MIS line.

The conventional circuit theories of [1] and [3] do not specif
the voltage path uniquely, and the choice is not obvious. FE L
example, devices embedded in MIS lines are typically fabricat: ; 0.25x10° -
on the silicon surface; they are connected to the signal line wi £ "
vias through the oxide and to the ground with ohmic contacts -
the silicon surface. This suggests that a voltage pathn the
MIS line from the silicon surface through the oxide to the signz ol
line, not the total voltage,, might correspond most closely to
the actual voltage seen by the device and be the best normaliz t(ns)
voltage in the circuit theory.

We used the construction procedure of Appendix Ato deté‘:—q' 5. Fourier tr{:‘lnsfo_rm of the characteristic impedance labeled

. . ower/oxide-voltage” of Fig. 4.
mine the causal power-normalized voltage and current for our
MIS line. To construct the voltage, we used two basis func-
tions and multiplying rational functions formed from the rawe constructed in this way and the power/total-voltage charac-
tios of first-order polynomials irv to approximate the elec- teristicimpedance,_.,, whereZ,,_, is defined from the power
tric field. The first basis functiorf.; was uniform in the oxide constraintand the total voltageacross the oxide and substrate.
and zero in the substrate, while the second basis fungtion The agreement is excellent.
was uniform in the substrate and zero in the oxide. The dashed he solid curve in Fig. 4, which is labeled “Causay,” cor-
curve marked with hollow squares plots the maximum value eésponds to the magnitude of the causal power-normalized char-
| >° cem fom — €] /|e:| at each frequency point on the right axisacteristic impedance. When we addggl., to this figure, the
The curve shows that our rational function approximation to theo curves were indistinguishable.
actual fields of the MIS line is extremely accurate. However, Fig. 4 shows that the characteristic impedance de-

We expanded the magnetic field using only a single constdimted from the power constraint of (7) and the voltaggacross
basis function in the oxide and substrate. The solid curve markibe oxide, which is labeled “Power/oxide-voltage,” differs sig-
with solid squares plots the maximum value of error we incurredficantly from the characteristic impedance required by the
with this choice of basis function. causal theory presented here. This shows that using the oxide

When we applied the procedure outlined in Appendix A tgoltage v.x does, in fact, affect the characteristic impedance
these basis functions to construct the causal power-normaligigdatly, as one might expect from the ratios plotted in Fig. 3.
voltage, we found that it equaled the total voltagecross the  Fig. 5 shows the Fourier transform of the characteristic
line, and that the causal power-normalized current was neairtlypedance defined with the voltage path through the oxide and
equal to the current in the signal conductor of the MIS line. ThHiustrates the difficulty with this definition of voltage and the
solid line of Fig. 3 marked with crosses plots the difference beesulting characteristic impedance: the guide will respond to
tween the causal power-normalized characteristic impedanceinput signals before the excitation reaches it.

0.50x10° -

oltage Z O(t)
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This example illustrates an important contribution of the We could have applied causality constraints to an anal-
causal theory presented here: it replaces the subjective ag@dus reciprocity-normalized circuit theory [12]. However,
sometimes misleading “common-sense” criteria for defininpe new reciprocity-normalized theory would fail to enforce
Zy in guides that are neither TEM, TE, or TM with a cleathe passivity condition required for stable circuit simulation.
and unambiguous procedure that guarantees causal resporides. condition ensures, for example, that the real part of the
This new approach should be especially useful in compléxpedance of a passive one-port circuit is always positive. Our
transmission structures where the choice of voltage and curreatisal power-normalized theory, on the other hand, explicitly
paths is not intuitively obvious. enforces the passivity and causality conditions, both of which

are needed for stable time-domain simulation.
X. ERROR IN | Z|
APPENDIX A

The magnitude o, in our causal circuit theory may be de- CONSTRUCTION OF g

termined from the phase @f, through a Hilbert transform rela-
tionship (18). Evaluating the Hilbert transform in (18) requires Referring to Fig. 1, we seek a normalizing voltagfw)
integrating over all frequencies. Ignorance of the phage att whene; can be written in the form of (12) We wish to construct
frequencies above those at which the theory is to be applied il normalizing voltagey, so that the temporal voltagé(¢, 0)
result in errors il Z| at the frequencies where the theory is apvill start exactly when the electric field arrives at= 0. That
plied. is, if ¥'(¢t, 0) = 0 for ¢t < 0, then the electric field at = 0
Appendix D develops a bound for the error iy | at a given Vvanishes for times < 0 and vice versa.
frequencyw when thearg(po) is known exactly up to some Consider the normalizing voltage
greater frequencyy. The result is

/
A 2 B@) = Y ane) [ £l alo,ndr @)
Wy — W ZO 5% m=1
wg Zo wi —w

(21)
wherea,, (w) are polynomials i. This normalizing voltage is

where Z, is the actual characteristic impedance dfjdis the defined so that

value of characteristic impedance we determine from incorrect ,

assumptions about the high frequency behavierrgfpo). vp(w)
The expression in (21) shows that the errol A§| can be

made as small as required if we are willing to restrict the fre- Referring again to Fig. 1, only the single forward mode is

quenciesv to which we apply the theory to frequencies mucpresent, thus, the voltageg associated with the normalizing

smaller thanw, the frequency to which we evaluate the phase ebltagev] atz = 0 is

po. Although the convergence indicated by (21) is slow, it cor- ,

responds to a worst-case scenario: convergence for more for-Y (w, 0) = ey (w)rp(w)

Z am(W)em(w). (23)
m=1

giving phase errors will be better. However, it should perhaps n

be emphasized that, while small errors|#| will sometimes => am(w)/fm(T) Ey(w, r, 0)dr  (24)
be unavoidable, the resulting characteristic impedance will be m=1

causal and have phase equahtg(po) where the phase ofy  and in the time domain is

is known.

n
0 = Y an® [ Fulr) Bt 0)ar. (@5)

XI. CONCLUSION m=1

We have presented a causal power-normalized waveguide 8ince thes,,, are polynomials, they have no poles at all and are
cuit theory that overcomes the TEM, TE, and TM restrictions @nalytic everywhere. As a result,,,(t) = 0 for ¢ < 0 (see
classic waveguide circuit theories. The network parametersAyppendix B). Thus, if the electric field vanishes fox 0, then
the causal circuit theory presented here preserve the causal peapdo its moments with respect to tlfig,, and we see that, by
erties of the actual circuit and the power in the network. Thinstruction, a vanishing electric field for< 0 implies that
is significant because these properties are required for stablé, 0) = 0 for ¢ < 0.
time-domain circuit simulation. Since classical waveguide cir- We will now show that it is possible to construct the poly-
cuit theories also enforce these properties in TEM, TE, and Tibmialsa,,, so that the inverse is true as well. That is, so that
guides, we can say that this theory conserves the essentialzgtt, 0) = 0 for ¢ < 0 implies that the moments of the electric
tributes of the classical waveguide circuit theory in a more gefield with respect to the,,, and, hence, the electric field itself,
eral setting. vanish fort < 0. In essence, we will show that there are enough

Inthe causal circuit theory, the magnitude of the characteristiegrees of freedom available in the choice of the polynomials
impedance is related to its temporal properties, not to its propey; that we can eliminate all of the poles in the lower half of
ties in the frequency domain. This adds a new perspective to thew plane from an expression that determines the moments of
debate over the relative merits of the various impedance nornihle electric field frome/. This will ensure that the expression
izations possible in waveguide equivalent-circuit theories. Thganalytic in the lower half-plane and, thus, that their Fourier
implications have been further explored in [9]-[11]. transforms are zero far< 0.
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Themth moment of the total electric field with respectfig, the voltagev’ associated with it is zero for timgs< 0 when-

is ever the electric field is zero fdr < 0 and vice versa. That is,
we have constructed a voltagfét, 0) that starts simultaneously
/fm(T) -EBy(w, r, 0)dr with the electric field.
! 0
v (/w, ) /fm(T) exw, T)dr APPENDIX B
v (w) MINIMUM PHASE FUNCTIONS
v'(w, 0) Throughout this paper, we denote the frequency-domain rep-
= — em(w) : . i ; i
vh(w) resentation of a function a&(w), and its time-domain repre
= IZHw)W' (w). (26) sentation ag'(t), wherew is the angular frequency ards the

time. Here F'(t) is the inverse Fourier transform &f(w)
If for somem, I,* has no poles in the lower half of taeplane,

then?’(¢, 0) = 0 for ¢ < 0 implies that thenth moment of the F(t) = i/ F(w)ejwt dw (31)
total electric field vanishes far < 0. Our aim is to show that 2

H —1 . . . . .
we can pick thes,, so that none of thé,," have any poles at \yhere+ is real, and the integration in (31) is performed over
all. We will do this by showing that we can construct the so ez values of.. If F(w) has poles on the real axis, we use

ade o)

that none of thel,,, have zeros. the limiting value of the integral in (31) as the integration con-
We can write the, as?m(“_’) = Pn(w)/Qm(w), where the o, approaches the real axis from beldw) is the Fourier
P,, andQ,, are polynomials inv, and expand thé,, as transform ofﬁ(t) as follows:
vh(w oo
In(w) = c:l((w)) F(w)= / F(t)e 5t gt (32)
Zaj(w)c]'(w) wherew may be complex.
j=1 1) Causal Function:A causal function(t) equals zero for
N cm(w) t < 0. Thisimplies that’(w) is analytic forlm(w) < 0 and that
n Im(F(w)) = H[Re(F(w))], where™X is the Hilbert transform
_ Qm(w) ) Pj(w) 141, [15].
= Z a;(w) . (27) [14], [15]
P (w) = Qj(w) 2) Minimum Phase FunctionWe call a function?'(w) min-

i . imum phase if botl#'(w) and its reciprocal / F'(w) correspond
We can rearrange (27) to obtain a single common denorgcasal functions in the time domain [15]. Since neither the de-
nator pendent nor independent variables in the time domain related by
a minimum phase function in the frequency domain can occur

Z aj(w)Pj(w)HQk(w) Zaj(w)lé(w) before the c_)thertwo nonzero signals related by a minimum
kit ; phase function start simultaneously

In(w) = I () A minimum phase function is causal; thus, it has the property
P(w) HQI(“’) m that its real and imaginary parts are a Hilbert transform pair.
tHm In addition, the real and imaginary parts of the complex loga-
(28) rithm of a minimum phase function are a Hilbert transform pair

[15]. That is,arg(#(w)) = H[ln |F(w)]]. The minimum phase
constraint is much stronger than the causality constraint: it al-
[J’.(w) = P;(w) H Qr(w). (29) lows the phase of the function to be determined from the Hilbert

ki) transform of the logarithm of its magnitude and the magnitude
of the function to be determined within a constant multiplier
from its phase.

where

The numerator of (28) is independent of the index
_ DefineG(w) to be a greatest common divisor of the That 3y Rational Function: A rational function F(w) can be
is, G is a polynomial of largest possible order such that= written as

I7 G, wherel (w) is a polynomial of order less than or equal to

the order of/’. The Euclidian algorithm provides a procedure H(w — o)
J P(w)
for finding a set of; so thafy”, a;(w)I’(w) = G(w) [13]. Thus, Flw) = Q@) ~ A ; (33)
we can write (28) as H(w = fi)
Zax(w)l’»(w) wherew may be complex) is a scalar, an®(w) andQ(w) are
3 ’ J G(w) 1 polynomials inw with complex rootsy; and3;. Except for the

Im(w) =

(30)  multiplier A, any rational functior (w) is entirely described by
its zeroesy; and poless,.
We have just shown that it is possible to constrygtso that ~ 4) Pole and Zero PositionsSince causal rational functions
thel,, in (26) have no zeroes. This guarantees that we can came analytic in the lower half of the plane defined by (w) <
struct a normalizing voltage), from the modal fields such that 0, all of the poles of a causal functidi{w ) must lie in the upper

I I I
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half of thew plane [14]. That islm(3;) > 0 for all the 3; in The logarithm of|Z,| is the inverse Hilbert transform of

(33). arg(po) as follows:

If F'(w)is minimum phase, then its reciprodalF'(w) is also
causal, and its zeroes must also lie in the upper half of.the |z _ 1 ”° arg (po(U)) d 37
plane. That is, botlm(3;) > 0 andIm(«;) > 0 for all of the n|Zo(w)| = —= /_Oo o—w O (37)

«; andg; in (33) [15].
If b(w) is the error we make in determining the phasegnfwe

APPENDIX C calculate the characteristic impedari€g from

SIMULTANEITY OF E\ AND H; © arg (po(g)) +b(o)

11 — —
We will now show thatfz, (¢, r, 0) andH (¢, =, 0) due to the I |Z§(w)| = ==~ /_Oo o —w
source in Fig. 1 start simultaneously. Assume that the transverse
electric field due to the source has not yet arrived at some trans¥We will always use a condition such as (19) to match the
verse coordinateat the reference plane of Fig. 1 for 0. That low-frequency limits of|Zy| and|Z{|; thus, we can write the
is, we will assume thak (¢, r, z) = 0 for t < 0 andz > 0. magnitude of the characteristic impedan€gwe will use in
The fields in the region > 0 must satisfyV x E = —9B/dt the theory as
for ¢ < 0, which implies

do.  (38)

Zp(0
o A 26 = | oy 1) (39)
oFE, OF, oB (34) 0
x — y=—-——.
dy Oz ot Expandingn(w) = In|Z)| — In|Zo| using (37) and (38), we
. obtain
As aresult,B,(t, r, z) = 0fort < 0andz > 0. -
The fields must also satisfy x H = <dE/ot fort < 0 and nw) = —wr—l/ b(o) do. (40)
z > 0, wheree is the position-dependent permittivity. Since —eo 0(0 — W)

Byt v, 2) = B:(t, r, 2) = Ofort <Oand»> 0 Sinceb(w) is odd and equal to zero fow| < wg, we can rewrite

(40) as

~

oHy = OH. <8Hy 8HX>Z_F8EZ (35)

ar dy

x+ —,atz.

g 9z n(w) = =207 / GO N (41)

o o(0? —w?)

This, in turn, implies that The sign of the real part gfy indicates the direction of the

) ) real time-averaged power carried by the mode down the guide.
OH, OH; 0 (36) If the real part ofp, for the forward (decaying) mode were neg-
a9z 0z ative, the mode would no longer dissipate energy as it propa-
. gated down the guide, and violate conservation of energy. Thus,
for¢ < 0andz > 0. This shows that, except for a dc COMPO§, o phase of, can only vary betweettr /2, and the errob(w)
nent,H(t, r, ) = 0 fort < 0andz > 0. Thus, we see that \y e make in evaluating the phaseaf cannot be greater than

E(t,r, z) =0fort <Oandz > 0impliesH(t, 7, z) =0 | gince the denominator of (41) is odd, the worst-case error
there as well, and the transverse magnetic field starts at the ﬁgf—

, N made whet(w) = +x. Thus, we can boung with
erence plane no earlier than the transverse electric field.

A similar argument shows that the transverse electric field , [ 1 w2
starts no earlier than the transverse magnetic field. This|77(w)| < 2w / oo = o) do =1n m
completes the argument, showing that neittg(z, r, 0) o 0
nor H.(t, r, 0) precedes the other and, thus, that they stasraightforward manipulation gives (21).
simultaneously.
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the error with which we calculateZy|. McGraw-Hill, 1951, vol. 10.
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